Platinum(II) phosphine complexes of dicarboxylates and ammonia: crystal structures of $\left[\left\{\mathrm{Pt}(\mathrm{PPh})_{3}\right)_{2}\left\{\mu-1,3-\left(\mathrm{O}_{2} \mathrm{C}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right\}_{2}\right],\left[\left\{\mathrm{Pt}(\mathrm{PPh})_{3} 2^{-}\right.\right.$ $\left.\left.\left(\mathrm{NH}_{3}\right)\right\}_{2}\left\{\mu-1,4-\left(\mathrm{O}_{2} \mathrm{C}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right\}\right]\left[\mathrm{PF} \mathrm{F}_{6} \mathrm{l}_{2}\right.$ and cis- $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]\left[\mathrm{NO}_{3}\right]_{2}$

A ndrew D. Burrows,* ${ }^{*}+{ }^{\text {a,b }}$ D. M ichael P. M ingos, ${ }^{\text {a }}$ Simon E. Lawrence, ${ }^{\text {a }}$ A ndrew J. P. W hite ${ }^{\text {a }}$ and David J. Williams ${ }^{\text {a }}$
a D epartment of Chemistry, Imperial College of Science, Technology and M edicine, South K ensington, L ondon SW 7 2AY, U K
${ }^{\mathrm{b}}$ School of Chemistry, U niversity of Bath, Claverton D own, Bath BA 2 7AY, U K

Abstract

The reaction of $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CO}_{3}\right)\right]$ with a rigid dicarboxylic acid $\mathrm{H}_{2} \mathrm{~L}$ gave rise to dimeric compounds [$\left.\left\{\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right\}_{2}(\mu-\mathrm{L})_{2}\right] \mathbf{1}\left[\mathrm{H}_{2} \mathrm{~L}=\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CO}_{2} \mathrm{H}\right)_{2}-1,4\right.$ (terephthalic acid) a, $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CO}_{2} \mathrm{H}\right)_{2}-1,3$ (isophthalic acid) b, trans, trans $-\mathrm{HO}_{2} \mathrm{CCH}=\mathrm{CHCH}=\mathrm{CHCO}_{2} \mathrm{H}$ (muconic acid) cor $4,4^{\prime}-\mathrm{HO}_{2} \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO} \mathrm{C}_{2} \mathrm{H}$ (biphenyldicarboxylic acid) d], which have been characterised spectroscopically and, in the case of $\mathbf{1 b}$, crystallographically. When the reaction was carried out in the presence of $\mathrm{NH}_{4}{ }^{4} F_{6}$ the $\mathrm{NH}_{4}{ }^{+}$competed with the carboxylic acid and the major product from the reaction was $\left[\left\{\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{NH}_{3}\right)\right\}_{2}(\mu-\mathrm{L})\right]\left[\mathrm{PF}_{6}\right]_{2}$, which has been characterised crystallographically for $\mathrm{L}=$ terephthalate. This suggests that $\mathrm{NH}_{4}{ }^{+}$is acidic enough to react with $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CO}_{3}\right)\right]$, which has been 4b; $\mathrm{L}_{2}=\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}$ (dppe), $\left.\mathrm{X}=\mathrm{PF}_{6} 5 \mathrm{Fa}\right]$ from $\left[\mathrm{PtL}_{2}\left(\mathrm{CO}_{3}\right)\right]$. The complex cis-[$\left.\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left({ }^{15} \mathrm{NH}_{3}\right)_{2}\right]\left[\mathrm{NO}_{3}\right]_{2}$ was synthesized from ${ }^{15} \mathrm{~N} \mathrm{H}_{4} \mathrm{NO}_{3}$ and characterised by a combination of ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\},{ }^{15} \mathrm{~N}-\left\{{ }^{1} \mathrm{H}\right\}$, ${ }^{195} \mathrm{Pt}$ and ${ }^{13} \mathrm{H} \mathrm{N} \mathrm{M} \mathrm{R}$ spectroscopy. The crystal structure of cis-[Pt $\left.\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]\left[\mathrm{NO}_{3}\right]_{2} 3 \mathrm{~b}$ has been determined and shows strong hydrogen bonding between the co-ordinated ammonia and the nitrate counter ions. The compound $\mathrm{PhC}_{2} \mathrm{CO}_{2} \mathrm{H}$ also reacted with $\left[\mathrm{PtL}_{2}\left(\mathrm{CO}_{3}\right)\right]$, though the products were not the expected bifunctional carboxylates cis$\left[\mathrm{PtL}_{2}\left(\mathrm{O}_{2} \mathrm{CC}_{2} \mathrm{Ph}\right)_{2}\right]$ but the bis(phenylalkynyl) compounds cis-[PtL $\left.\mathbf{2}_{2}\left(\mathrm{C}_{2} \mathrm{Ph}\right)_{2}\right]\left(\mathrm{L}=\mathrm{PPh}_{3} 6, \mathrm{~L}_{2}=\mathrm{dppe} \mathbf{7}\right)$.

For many years it was accepted that a mismatch of a soft metal and a hard ligand led to low-oxidation-state platinum-group metal-oxygen bonds being weak. ${ }^{1}$ In consequence, complexes incorporating such bonds were believed to be unstable However, as early as 1968 this was shown to be an oversimplification with the synthesis by Wilkinson and co-workers ${ }^{2}$ of $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}-\right.$ $\left.\left(\mathrm{O}_{2} \mathrm{CR}\right)_{2}\right] \quad\left(\mathrm{R}=\mathrm{Me}, \mathrm{CF}_{3}\right.$ or Ph$)$. Since this time other platinum(II) complexes of carboxylates ${ }^{3,4}$ and alkoxides ${ }^{5,6}$ have been prepared and studied, though only recently has a crystal structure of a platinum phosphine carboxylate been reported. ${ }^{4}$ Platinum carboxylate complexes have been shown to be important medicinally, an important example being the antitumour agent carboplatin, $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2}(\mathrm{cbdca})\right]$ (cbdca $=$ cyclo-butane-1,1-dicarboxylate). ${ }^{7}$ In this paper we explore the possibilities of self-assembly within the platinum phosphine carboxylate system by the use of rigid dicarboxylates that, in contrast to cbdca and malonate, are unable to chelate to a single metal atom. This leads to the possibility of using transition-metal-directed assembly to generate molecules containing large rings, ${ }^{8}$ which could provide sites for intercalation. In addition we examine the competition between carboxylic acids and ammonium cations, which has led to the realisation that the reaction of $\left[\mathrm{Pt}\left(\mathrm{PR}_{3}\right)_{2}\left(\mathrm{CO}_{3}\right)\right]$ with NH_{4}^{+}provides a simple and effective route to complexes of the general formula $\left[\mathrm{Pt}\left(\mathrm{PR}_{3}\right)_{2}-\right.$ $\left.\left(\mathrm{NH}_{3}\right)_{2}\right]^{2+}$ which have, perhaps surprisingly, not previously been fully characterised.

Results and D iscussion

Synthesis and characterisation of complexes $\left[\left\{\mathrm{Pt}\left(\mathrm{PP} \mathrm{Ph}_{3}\right)_{2}\right\}_{2}(\mu-\mathrm{L})_{2}\right]$ 1a-1d

On stirring $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CO}_{3}\right)\right]$ with a rigid dicarboxylic acid in

[^0]ethanol for several hoursthedimeric species [$\left.\left\{\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right\}_{2}(\mu-\mathrm{L})_{2}\right]$ $1\left[\mathrm{H}_{2} \mathrm{~L}=\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CO}_{2} \mathrm{H}\right)_{2}-1,4\right.$ (terephthalic acid) a, $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CO}_{2} \mathrm{H}_{2}{ }^{-}\right.$ 1,3 (isophthalic acid) b, trans, trans- $\mathrm{HO}_{2} \mathrm{CCH}=\mathrm{CHCH}=$ $\mathrm{CHCO}_{2} \mathrm{H}$ (muconic acid) c or $4,4^{\prime}-\mathrm{HO}_{2} \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{H}$ (biphenyldicarboxylic acid) d] were obtained as the only platinum-containing products. The compounds were obtained as colourless solids which were separated by filtration and recrystallised from dichloromethane and either hexane or diethyl ether. In all cases a singlet with ${ }^{195} \mathrm{Pt}$ satellites was observed in the ${ }^{31} P-\left\{{ }^{1} \mathrm{H}\right\} N M R$ spectrum, indicating equivalent phosphorus atoms. The ${ }^{11}$ (PPt) coupling constants vary from 3830 to 3876 Hz and are very similar in magnitude to those observed for the complexes $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{O}_{2} \mathrm{CR}\right)_{2}\right]\left(\mathrm{R}=\mathrm{Me}, \mathrm{CF}_{3}\right.$ or Ph$),{ }^{4}$ and consistent with phosphorus trans to oxygen. The chemical shifts lie in a narrow range between $\delta 6.6$ and 7.1 indicating very similar structures. No evidence was observed in the ${ }^{1} \mathrm{H}$ NMR spectra for protonated carboxylate groups. In the IR spectra the large separation between $v_{\text {asym }}{ }^{-}$and $v_{\text {sym }}{ }^{-}$ $\left(\mathrm{CO}_{2}\right)\left(283-303 \mathrm{~cm}^{-1}\right)$ is characteristic of monodentate carboxylates. ${ }^{9}$ Evidence for the dimeric nature of the complexes was obtained from the fast atom bombardment (FAB) mass spectra. With the exception of 1d, the $\left[\mathrm{Pt}_{2}\left(\mathrm{PPh}_{3}\right)_{4} L_{2}\right]^{+}$ion was observed as the highest m / z peak. However, dimers can be observed in FAB mass spectra as a result of monomer aggregation during the experiment and hence their presence cannot be regarded as conclusive evidence for a dimeric structure. In addition, the absence of higher m / z peaks cannot definitively rule out higher oligomers. Consequently a single-crystal X-ray analysis of one of these complexes was undertaken in order to confirm the structure. Crystals of $\mathbf{1 b}$ were obtained by the slow diffusion of hexane into a dichloromethane solution.
The X-ray analysis of complex $\mathbf{1 b}$ confirms that the isophthalate ligands adopt a binucleating role bridging between two independent platinum centres to form a 16 -membered

Table 1 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for complex 1 b

$\mathrm{Pt}(1)-\mathrm{O}(2)$	$2.05(2)$	$\mathrm{Pt}(1)-\mathrm{O}(26)$	$2.08(2)$
$\mathrm{Pt}(1)-\mathrm{P}(46)$	$2.216(6)$	$\mathrm{Pt}(1)-\mathrm{P}(27)$	$2.241(8)$
$\mathrm{Pt}(14)-\mathrm{O}(13)$	$2.09(2)$	$\mathrm{Pt}(14)-\mathrm{O}(15)$	$2.09(2)$
$\mathrm{Pt}(14)-\mathrm{P}(84)$	$2.231(7)$	$\mathrm{Pt}(14)-\mathrm{P}(65)$	$2.239(8)$
$\mathrm{O}(2)-\mathrm{Pt}(1)-\mathrm{O}(26)$	$83.3(7)$	$\mathrm{O}(2)-\mathrm{Pt}(1)-\mathrm{P}(46)$	$92.2(5)$
$\mathrm{O}(26)-\mathrm{Pt}(1)-\mathrm{P}(46)$	$173.3(5)$	$\mathrm{O}(2)-\mathrm{Pt}(1)-\mathrm{P}(27)$	$169.6(5)$
$\mathrm{O}(26)-\mathrm{Pt}(1)-\mathrm{P}(27)$	$87.5(5)$	$\mathrm{P}(46)-\mathrm{Pt}(1)-\mathrm{P}(27)$	$97.4(3)$
$\mathrm{O}(13)-\mathrm{Pt}(14)-\mathrm{O}(15)$	$84.6(6)$	$\mathrm{O}(13)-\mathrm{Pt}(14)-\mathrm{P}(84)$	$170.9(5)$
$\mathrm{O}(15)-\mathrm{Pt}(14)-\mathrm{P}(84)$	$86.4(5)$	$\mathrm{O}(13)-\mathrm{Pt}(14)-\mathrm{P}(65)$	$90.5(5)$
$\mathrm{O}(15)-\mathrm{Pt}(14)-\mathrm{P}(65)$	$174.3(5)$	$\mathrm{P}(84)-\mathrm{Pt}(14)-\mathrm{P}(65)$	$98.4(3)$

Fig. 1 Solid-state structure of the diplatinum complex $\mathbf{1 b}$. The transannular Pt . . . Pt distance is $8.9 \AA$
metallocyclic ring (Fig. 1). Selected bond lengths and angles are given in Table1. Of the possible bridging symmetries, a conformation with $\mathrm{C}_{2 v}$ symmetry would be the intuitive choice, however a lower molecular symmetry $\left(C_{2}\right)$ is adopted in the solid state. The geometries at the two platinum centres are essentially the same, being distorted square planar with cis angles ranging between 83.3(7) and 98.4(3) ; deviations from planarity are less than $0.1 \AA$. The Pt-P and Pt-O distances are unexceptional. The metallocyclic ring has a folded geometry with a cleft angle between the isophthalate rings of ca. 58°, the ring centroid \cdots ring centroid distance being $4.77 \AA$. All four carboxylate groups are rotated out of the plane of their parent aromatic rings, the torsional twists about $C(3)-C(5), C(7)-C(11), C(16)-C(18)$ and $C(20)-C(24)$ being $17,31,16$ and 12° respectively. The platinum co-ordination planes are both folded away from the open face formed by the isophthalate rings, subtending an angle of 121°. It is surprising that, with the bulky phosphine groups being folded away from the open face of the macrocycle, there is no close approach of either symmetry-related complexes or solvent molecules (present in abundance) to this exposed cleft.

The structure of a related platinum(II) complex, $\left[\left\{\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2}\right\}_{2}-\right.$ $\left.\left\{\mu-\mathrm{O}_{2} \mathrm{C}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CO}_{2}\right\}_{2}\right]$, has been reported ${ }^{10}$ which involvesglutarates bridging between the two metal atoms. This complex was formed from the reaction of cis- $\left[\operatorname{Pt}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{OH}_{2}\right)_{2}\right] \mathrm{SO}_{4}$, glutaric acid and barium hydroxide in aqueous solution and also contains a 16 -membered ring, though in this case the complex is centrosymmetric. In this compound, chelation of the dicarboxylate is geometrically possible, but this would have given rise to a sterically unfavourable eight-membered ring. A zirconium adduct of isophthalic acid, $\left[\left\{\mathrm{Zr}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)_{2}\right\}_{2}\left\{\mu-1,3-\left(\mathrm{O}_{2} \mathrm{C}\right)_{2}{ }^{-}\right.\right.$ $\mathrm{C}_{6} \mathrm{H}_{4} 3_{2}$], has also been reported. ${ }^{11}$ Like $\mathbf{1 b}$, this has a dimeric structure with two isophthalate ligands bridging the two metal centres. In contrast to $\mathbf{1 b}$ though, each isophthalate exhibits two different co-ordination modes with one monodentate and one bidentate carboxylate This allows each zirconium atom to bond to one of each type of carboxylate group and maintain a formal 18-electron configuration.

Table 2 Selected bond lengths (\AA) and angles (${ }^{\circ}$) for complex 2

Pt-O(4)	$2.064(7)$	$\mathrm{Pt}-\mathrm{N}(3)$	$2.088(9)$
$\mathrm{Pt}-\mathrm{P}(2)$	$2.243(3)$	$\mathrm{Pt}-\mathrm{P}(1)$	$2.274(3)$
$\mathrm{O}(4)-\mathrm{C}(5)$	$1.295(13)$	$\mathrm{C}(5)-\mathrm{O}(5)$	$1.235(14)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.51(2)$		
$\mathrm{O}(4)-\mathrm{Pt}-\mathrm{N}(3)$	$85.0(3)$	$\mathrm{O}(4)-\mathrm{Pt}-\mathrm{P}(2)$	$177.9(2)$
$\mathrm{N}(3)-\mathrm{Pt}-\mathrm{P}(2)$	$93.0(3)$	$\mathrm{O}(4)-\mathrm{Pt}-\mathrm{P}(1)$	$85.3(2)$
$\mathrm{N}(3)-\mathrm{Pt}-\mathrm{P}(1)$	$169.3(3)$	$\mathrm{P}(2)-\mathrm{Pt}-\mathrm{P}(1)$	$96.55(10)$

Fig. 2 Solid-state structure of the cationic complex present in 2
Synthesis and characterisation of $\left[\left\{\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{NH}_{3}\right)\right\}_{2}\{\mu-1,4-\right.$ $\left.\left.\left(\mathrm{O}_{2} \mathrm{C}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right\}\right]\left[\mathrm{P} \mathrm{F}_{6} \mathbf{l}_{2} \mathbf{2}\right.$
When $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CO}_{3}\right)\right]$ and terephthalic acid were stirred together in ethanol in the presence of $\mathrm{NH}_{4} \mathrm{PF}_{6}$ a colourless solid was produced in a similar manner to the syntheses of complexes 1a-1d. The ${ }^{31} \mathrm{p}-$ $\left.^{1} \mathrm{H}\right\}$ N M R spectrum showed only one product to be present but in this case, in contrast to 1a-1d, a pair of doublets with associated ${ }^{195} \mathrm{Pt}$ satellites were observed at $\delta 10.1$ and 6.7 indicating two non-equivalent phosphorus environments. In addition a septet associated with $\mathrm{PF}_{6}{ }^{-}$was also observed and the integration suggested a $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}: \mathrm{PF}_{6}$ ratio of 1:1. A bsorptions in the IR spectrum at 1598 and 1313 cm^{-1} showed the presence of terephthalate with the carboxylates monodentate, whilst an absorption at $3356 \mathrm{~cm}^{-1}$ suggested NH_{3} to be present. Further evidence for the presence of NH_{3} came from the observation of nitrogen in the microanalysis. This was unlikely to have arisen from $\mathrm{NH}_{4}{ }^{+}$since the presence of $\mathrm{PF}_{6}{ }^{-}$suggested a cationic complex. Taken together, the spectroscopic and analytical data are consistent with the formulation $\left[\left\{\mathrm{Pt}^{2}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{NH}_{3}\right)\right\}_{2}\left\{\mu-1,4-\left(\mathrm{O}_{2} \mathrm{C}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right\}\right]\left[\mathrm{PF}_{6}\right]_{2}$, in which the NH_{3} has been derived from $\mathrm{NH}_{4} \mathrm{PF}_{6}$. A mmonium has therefore competed with terephthalic acid for reaction with the carbonate, acting as both an acid and a source of the NH_{3} conjugate-base ligand. A lthough the M^{+}peak was not observed in the FA B mass spectrum, there is evidence for a dimeric structure, with observed peaks assigned to the species $\left[\mathrm{Pt}_{2}\left(\mathrm{PPh}_{3}\right)_{3}-\right.$ $\left.\left\{1,4-\left(\mathrm{O}_{2} \mathrm{C}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right\}\left(\mathrm{NH}_{3}\right)\right]^{+}$and $\left[\mathrm{Pt}_{2}\left(\mathrm{PPh}_{3}\right)_{3}\left\{1,4-\left(\mathrm{O}_{2} \mathrm{C}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right\}\right]^{+}$. The identity of $\mathbf{2}$ has been confirmed by a single-crystal X -ray diffraction study, with the crystals obtained from the slow diffusion of hexane into a dichloromethane solution.

The X -ray analysis of complex 2 (Fig. 2) reveals a structure in which a single terephthalate ligand adopts a binucleating role, bridging two $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{NH}_{3}\right)$ moieties in a C_{i} symmetric arrangement. Selected bond lengths and angles are given in Table 2. The co-ordination geometry at platinum is distorted square planar with cis angles in the range $85.0(3)-96.6(1)^{\circ}$, the platinum and its four co-ordinated atoms being coplanar to within $0.05 \AA$. The Pt-P distances differ significantly with that trans to oxygen being 0.031 (3) \AA shorter than that trans to nitrogen (Table 2). The carboxylate group is rotated by ca. 14° out of the plane of the terephthalate ring which is in turn inclined by 40° to the platinum co-ordination plane. The geometry of the complex is constrained by two intramolecular
$\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between one of the hydrogen atoms of each amminegroup and their adjacent terephthal ate carbonyl oxygen atoms ($\mathrm{N} \cdots \mathrm{O}, \mathrm{H} \cdots \mathrm{O}$ distances $2.85,2.17 \AA$; $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ angle 132°). There are no significant close approaches to the faces of the terephthalate ring, the ring being partially overlaid on both sides by phenyl rings of one of the phosphine ligands though at a distance too great for any significant $\pi-\pi$ stacking interactions. There are no notable intermolecular contacts, the approach to the non-hydrogen-bonding amminehydrogen atoms being shielded by oneof theother phosphine rings of the complex.

The ability of $\mathrm{NH}_{4}{ }^{+}$to compete with $\mathrm{HO}_{2} \mathrm{CR}$ in the reaction with platinum(II) complexes was further illustrated by the reaction of $\left[\left\{\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right\}_{2}\left\{\mu-1,4-\left(\mathrm{O}_{2} \mathrm{C}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right\}_{2}\right]$ la with an excess of $\mathrm{NH}_{4} \mathrm{PF}_{6}$ in ethanol. A fter 72 h the solvent was removed in vacuo and the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum of the dichloromethane extract showed a $55: 45$ mixture of 1 la and $\left[\left\{\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{NH}_{3}\right)\right\}_{2}{ }^{-}\right.$ $\left.\left\{\mu-1,4-\left(\mathrm{O}_{2} \mathrm{C}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right\}\right]\left[\mathrm{PF}_{6}\right]_{2} \mathbf{2}$. This ratio of $\mathbf{1 a}: \mathbf{2}$ was unaltered by stirring with a further excess of $\mathrm{NH}_{4}{ }^{\mathrm{PF}}{ }_{6}$ in ethanol for 48 h .

Synthesis and characterisation of $\left[\mathrm{PtL}_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]^{++}$3-5

Thesynthesis and characterisation of $\left[\left\{\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{NH}_{3}\right)\right\}_{2}\{\mu-1,4-\right.$ $\left.\left.\left(\mathrm{O}_{2} \mathrm{C}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right\}\right]^{2+}$ has demonstrated that $\mathrm{NH}_{4}{ }^{+}$is acidic enough to react with $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CO}_{3}\right)\right]$. Therefore reaction without the presence of another acid should lead to the complex [Pt$\left.\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]^{2+}$. In view of the importance of NH_{3} and PPh_{3} as ligands in platinum chemistry it is somewhat surprising that this complex has not previously been well characterised. ${ }^{12} \mathrm{~N}$ eutral complexes containing ammonia and a phosphine ligand, $\left[\mathrm{PtCl}_{2}\left(\mathrm{PR}_{3}\right)\left(\mathrm{NH}_{3}\right)\right]$, werefirst prepared by Chatt et al. ${ }^{13}$ from the reaction of $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{4}\left(\mathrm{PR}_{3}\right)_{2}\right]$ with NH_{3} and the crystal structure of $\left[\mathrm{PtCl}_{2}\left(\mathrm{PM} \mathrm{e}_{3}\right)\left(\mathrm{NH}_{3}\right)\right]$ has been reported as an adduct with a crown ether ${ }^{14}$ and β-cyclodextrin. ${ }^{15} \mathrm{~K}$ inetic studies ${ }^{16}$ have demonstrated the existence in solution of $\left[\operatorname{Pt}\left(\mathrm{PEt}_{3}\right)_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]^{2+}$ but neither this complex nor indeed any of the general formula $\left[\mathrm{Pt}\left(\mathrm{PR}_{3}\right)_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]^{2+}$ has been fully characterised.

Quantitative conversion of $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CO}_{3}\right)\right]$ into cis$\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{X}_{2} \mathbf{3}\left(\mathrm{X}=\mathrm{PF}_{6}{ }^{-}\right.$a or $\mathrm{NO}_{3}{ }^{-}$b) was achieved by stirring $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CO}_{3}\right)\right]$ with $\mathrm{NH}_{4} \mathrm{X}$ in ethanol for several hours. The reaction was not limited to derivatives of PPh_{3}, and cis- $\left[\mathrm{Pt}\left(\mathrm{PEt}_{3}\right)_{2}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{X}_{2} 4\left(\mathrm{X}=\mathrm{PF}_{6}{ }^{-}\right.$a or $\mathrm{NO}_{3}{ }^{-}$b) and $[\mathrm{Pt}-$ (dppe) $\left.\left(\mathrm{NH}_{3}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]_{2}$ 5a (dppe $\left.=\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)$ were prepared in a similar manner from $\left[\mathrm{Pt}\left(\mathrm{PEt}_{3}\right)_{2}\left(\mathrm{CO}_{3}\right)\right]$ and $[\mathrm{Pt}(\mathrm{dppe})$ $\left.\left(\mathrm{CO}_{3}\right)\right]$ respectively. H owever, reaction of $\left[\mathrm{Pt}(\mathrm{dppe})\left(\mathrm{CO}_{3}\right)\right]$ with $\mathrm{NH}_{4} \mathrm{NO}_{3}$ led to a mixture of products from which $[\mathrm{Pt}(\mathrm{dppe})$ $\left(\mathrm{NH}_{3}\right)_{2}\left[\mathrm{NO}_{3}\right]_{2} 5$ b could not be isolated. As expected, the natures of both the phosphine and the anion have a strong effect on the solubility of the complexes. Complexes $\mathbf{3 a}, \mathbf{3 b}, \mathbf{4} \mathbf{a}$ and $5 \mathbf{a}$ are all soluble in dichloromethane whereas $\mathbf{4 b}$ is insoluble in dichloromethane but soluble in water.

Complexes 3-5 were characterised by multinuclear NMR and IR spectroscopies, FAB mass spectrometry and microanalysis. In the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\} N M R$ spectra singlets with ${ }^{195} \mathrm{Pt}$ satellites were observed with ${ }^{1} \mathrm{~J}$ (PPt) between 3127 and 3428 Hz . As expected, ${ }^{1} \mathrm{~J}$ (PPt) varies in the order $\mathrm{PPh}_{3}>\mathrm{dppe}>\mathrm{PEt}_{3}$, consistent with the decrease in π-back donation from PPh_{3} to PEt_{3}. The coupling constants for $\mathbf{3 a}$ and $\mathbf{3 b}$ are both slightly Iarger than that observed for cis- $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{py})_{2}\right]\left[\mathrm{ClO}_{4}\right]_{2}(\mathrm{py}=$ pyridine $)$ ${ }^{[1}$ (PPt) 3276 Hz . ${ }^{17}$ In the ${ }^{1} \mathrm{H}$ NMR spectra (CDCl_{3}) resonances due to the ammonia hydrogen atoms were observed as broad singlets at $\delta 3.15$ for $\mathbf{3 a}$ and at $\delta 4.28$ for $\mathbf{3 b}$, with a $1: 5$ intensity ratio between these and the phenyl proton resonances. The large difference between the two values of δ is indicative of strong NH_{3}-anion hydrogen bonding present in solutions of the nitrate salt, 3b. For complexes $\mathbf{4}$ and $\mathbf{5} \delta$ was observed between 4.4 and 4.6 , though in the cases of the hexafluorophosphate salts $\mathbf{4 a}$ and $\mathbf{5 a}$ hydrogen bonding to the solvent $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$ is the likely cause of this shift (the complexes are not soluble in CDCl_{3}).

Table 3 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for complex 3 b

$\mathrm{Pt}(1)-\mathrm{N}(5)$	$2.092(8)$	$\mathrm{Pt}(1)-\mathrm{N}(4)$	$2.094(8)$
$\mathrm{Pt}(1)-\mathrm{P}(2)$	$2.264(4)$	$\mathrm{Pt}(1)-\mathrm{P}(3)$	$2.273(4)$
$\mathrm{Pt}(6)-\mathrm{N}(9)$	$2.096(8)$	$\mathrm{Pt}(6)-\mathrm{N}(10)$	$2.112(8)$
$\mathrm{Pt}(6)-\mathrm{P}(7)$	$2.260(4)$	$\mathrm{Pt}(6)-\mathrm{P}(8)$	$2.276(4)$
$\mathrm{N}(5)-\mathrm{Pt}(1)-\mathrm{N}(4)$	$82.1(4)$	$\mathrm{N}(5)-\mathrm{Pt}(1)-\mathrm{P}(2)$	$171.1(3)$
$\mathrm{N}(4)-\mathrm{Pt}(1)-\mathrm{P}(2)$	$91.8(3)$	$\mathrm{N}(5)-\mathrm{Pt}(1)-\mathrm{P}(3)$	$88.6(3)$
$\mathrm{N}(4)-\mathrm{Pt}(1)-\mathrm{P}(3)$	$170.1(3)$	$\mathrm{P}(2)-\mathrm{Pt}(1)-\mathrm{P}(3)$	$97.8(1)$
$\mathrm{N}(9)-\mathrm{Pt}(6)-\mathrm{N}(10)$	$83.0(4)$	$\mathrm{N}(9)-\mathrm{Pt}(6)-\mathrm{P}(7)$	$172.0(3)$
$\mathrm{N}(10)-\mathrm{Pt}(6)-\mathrm{P}(7)$	$91.6(3)$	$\mathrm{N}(9)-\mathrm{Pt}(6)-\mathrm{P}(8)$	$88.7(3)$
$\mathrm{N}(10)-\mathrm{Pt}(6)-\mathrm{P}(8)$	$171.1(3)$	$\mathrm{P}(7)-\mathrm{Pt}(6)-\mathrm{P}(8)$	$97.0(2)$

The ${ }^{15} \mathrm{~N}$-labelled derivative, cis- $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left({ }^{15} \mathrm{NH}_{3}\right)_{2}\right]\left[\mathrm{NO}_{3}\right]_{2}$, can readily be prepared using ${ }^{15} \mathrm{~N}_{4} \mathrm{NO}_{3}$. The additional coupling constants observed in the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum that were not observable in the spectrum of the unlabelled complex are $^{2} \mathrm{~J}(\mathrm{PP}) 22,{ }^{2} \mathrm{~J}\left(\mathrm{PN}_{\text {trans }}\right) 39$ and ${ }^{2} \mathrm{~J}\left(\mathrm{PN}_{\text {cis }}\right)-1 \mathrm{~Hz}$. The ${ }^{15} \mathrm{~N}-\left\{{ }^{1} \mathrm{H}\right\}$ NM R spectrum has a multiplet at $\delta-378.5$ with ${ }^{13}$ (NPt) 194 Hz , whereas the ${ }^{195}$ Pt N M R spectrum shows the expected triplet of triplets at $\delta-4452$. In the ${ }^{1} \mathrm{H} N \mathrm{NR}$ spectrum the broad singlet observed at $\delta 4.3$ for the unlabelled complex is resolved into a multiplet with ${ }^{1} \mathrm{~J}(\mathrm{HN}) 72,{ }^{2} \mathrm{~J}(\mathrm{HPt}) 32$ and ${ }^{3} \mathrm{~J}\left(\mathrm{HP}_{\text {trans }}\right) 3 \mathrm{~Hz}$.
Infrared spectra, recorded as KBr pellets, showed bands at $3342 \mathrm{~s}, 3274 \mathrm{~s}\left[\mathrm{v}\left(\mathrm{NH}_{3}\right)\right], 1623 \mathrm{~m}\left[8\left(\mathrm{NH}_{3}\right)\right]$ and $833 \mathrm{vs} \mathrm{cm}{ }^{-1}\left[\mathrm{v}\left(\mathrm{PF}_{6}\right)\right]$ for 3a and at 3436s, 3335m [$\left.v\left(\mathrm{NH}_{3}\right)\right]$, $1625 \mathrm{~s}\left[\delta\left(\mathrm{NH}_{3}\right)\right]$ and $1384 \mathrm{vs} \mathrm{cm}^{-1}\left[\mathrm{v}\left(\mathrm{NO}_{3}\right)\right]$ for 3 b . For 3 a and $3 \mathrm{~b} \mathrm{M}^{2+}$ was observed in the FAB mass spectrum at $\mathrm{m} / \mathrm{z} 377$. Generally for the $\mathrm{PF}_{6}{ }^{-}$salts, $\mathbf{3 a}, \mathbf{4 a}$ and 5a, the most intense peaks were due to $\left[\mathrm{M}-2 \mathrm{NH}_{3}\right]^{+}$ and $[\mathrm{M}+\mathrm{H}]^{+}$, with $\left[\mathrm{M}-\mathrm{NH}_{3}\right]^{+}$and $\left[\mathrm{M}+\mathrm{PF}_{6}\right]^{+}$also observed, whereas for the nitrate salts, $\mathbf{3 b}$ and $\mathbf{4 b}$, the most intense peaks were due to $\left[\mathrm{M}-2 \mathrm{NH}_{3}+\mathrm{NO}_{3}\right]^{+}$and $\left[\mathrm{M}-2 \mathrm{NH}_{3}\right]^{+}$with M^{+} and $\left[\mathrm{M}-\mathrm{NH}_{3}\right]^{+}$also observed.

In order to confirm the proposed structure and determine the nature of the hydrogen bonding present an X -ray analysis of complex 3b was undertaken. Single crystals were prepared from the slow diffusion of hexane into a tetrahydrofuran (thf) solution. The structure analysis shows there to be two crystallographically independent cations in the asymmetric unit. Both molecules have essentially identical conformations and are each hydrogen bonded by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ linkages to two nitrate anions. The hydrogen-bonding geometries are virtually identical for the two independent species (Fig .3), with one nitrate hydrogen bonded to the two NH_{3} ligands via lone pairs on two oxygen atoms and the other hydrogen bonded to the two NH_{3} ligands via two lone pairs on the same oxygen atom.

Selected bond lengths and angles are given in Table 3. Both platinum atoms have significantly distorted co-ordination geometries with cis angles at Pt in the ranges 82.1(4)-97.8(1) ${ }^{\circ}$ for the first molecule and 83.0(4)-97.0(2) ${ }^{\circ}$ for the second, the principal distortions being due to a contraction of the $\mathrm{N}-\mathrm{Pt}-\mathrm{N}$ angles and an expansion of those for P-Pt-P. There are marked departures from planarity for the platinum co-ordination, ca. $0.1 \AA$ for the two molecules. The Pt-N distances, which range between $2.092(8)$ and $2.112(8)$ and $\mathrm{Pt}-\mathrm{P}$ distances, between $2.260(4)$ and $2.276(4) \AA$, are normal. There are no other significant intermolecular packing interactions other than normal van der Waals forces.

Reaction of $\left[\mathrm{Pt}\left(\mathrm{PR}_{3}\right)_{2}\left(\mathrm{CO}_{3}\right)\right]$ with $\mathrm{PhC} \equiv \mathrm{CCO}_{2} \mathrm{H}$

In an attempt to prepare carboxylate complexes containing additional functionalities, $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CO}_{3}\right)\right]$ and $[\mathrm{Pt}(\mathrm{dppe})$ $\left(\mathrm{CO}_{3}\right)$] were treated with $\mathrm{PhC} \equiv \mathrm{CCO}_{2} \mathrm{H}$ under the same conditionsas thosewhich gave rise to complexes 1a-1d. In both cases only one product was observed in the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ N M R spectrum, though the magnitude of the ${ }^{11}$ (PPt) coupling constants (2331 Hz for the PPh_{3} derivative and 2280 Hz for the dppe derivative) strongly suggested that the ligand trans to phosphorus was, in

Fig. 3 Solid-state structure of one of the independent cation-anion groups in complex 3b. The hydrogen-bond distances (\AA)) and angles (${ }^{\circ}$) are $\mathrm{N}(5) \cdots \mathrm{O}(132) 2.84, \mathrm{H} \cdots \mathrm{O}(132) 2.00$ and $\mathrm{N}(5)-\mathrm{H} \cdots \mathrm{O}(132)$ 157, $\mathrm{N}(4) \cdots \mathrm{O}(134) 2.99, \mathrm{H} \cdots \mathrm{O}(134) 2.17$ and $\mathrm{N}(4)-\mathrm{H} \cdots \mathrm{O}(134)$ 152, $\mathrm{N}(4) \cdots \mathrm{O}(152) 2.89, \mathrm{H} \cdots \mathrm{O}(152) 2.07$ and $\mathrm{N}(4)-\mathrm{H} \cdots \mathrm{O}(152)$ 153, $\mathrm{N}(5) \cdots \mathrm{O}(152) 2.96, \mathrm{H} \cdots \mathrm{O}(152) 2.15$ and $\mathrm{N}(5)-\mathrm{H} \cdots \mathrm{O}(152)$ 150. For the other independent cation-anion grouping the equivalent hydrogen bond distances (\AA) and angles $\left({ }^{\circ}\right)$ are $N(9) \cdots O(144) 2.87$ $\mathrm{H} \cdots \mathrm{O}(144) 2.04$ and $\mathrm{N}(9)-\mathrm{H} \cdots \mathrm{O}(144) 156, \mathrm{~N}(10) \cdots \mathrm{O}(143) 2.94$ $H \cdots O(143) 2.10$ and $N(10)-H \cdots O(143) 158, N(10) \cdots O(162) 2.92$, $\mathrm{H} \cdots \mathrm{O}(162) 2.11$ and $\mathrm{N}(10)-\mathrm{H} \cdots \mathrm{O}(162) 151, \mathrm{~N}(9) \cdots \mathrm{O}(162) 3.00$ H $\cdots \mathrm{O}(162) 2.20$ and $\mathrm{N}(9)-\mathrm{H} \cdots \mathrm{O}(162) 149$
both cases, exerting a considerably greater trans influence than that of a carboxylate oxygen. The NMR together with FAB mass spectral and microanalytical data has enabled the complexes to be identified as $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{C} \equiv \mathrm{CPh})_{2}\right]$ and $[\mathrm{Pt}(\mathrm{dppe})$ $\left.(\mathrm{C} \equiv \mathrm{CPh})_{2}\right]$ 7. The previously reported ${ }^{18}$ coupling constant for trans- $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{C} \equiv \mathrm{CPh})_{2}\right]$ is larger than that observed here by over 650 Hz , suggesting that 6 is the previously unreported cis isomer. This is supported by the similarity of the coupling constants for $\mathbf{6}$ and 7, the chelating dppe ligand constraining the phenylalkynyl ligands to a cis geometry in 7. In the reactions loss of CO_{2} has occurred from both the carbonate and the carboxylate to give rise to the bis(phenylalkynyl) complexes.

C onclusion

The above results demonstrate that it is possible to use the reaction of a platinum bis(phosphine) carbonate and a rigid dicarboxylic acid to give rise to dinuclear structures containing clefts which may be capable of interaction with another molecule, via the two π systems. H owever, not all carboxylic acids react to give bis(carboxylate) complexes: with $\mathrm{PhC}=\mathrm{CCO}_{2} \mathrm{H}$ loss of CO_{2} occurs leading to bis(phenylalkynyl) complexes.

It has al so been shown that $\mathrm{NH}_{4}{ }^{+}$is acidic enough to compete with carboxylic acids in the reaction with $\left[\mathrm{PtL}_{2}\left(\mathrm{CO}_{3}\right)\right]$, so that in the presence of $\mathrm{NH}_{4}{ }^{+}$reactions lead to dinuclear compounds which contain both ammonia and carboxylate ligands. This observation led to the prediction, subsequently realised, that the reaction of a platinum bis(phosphine) carbonate with $\mathrm{NH}_{4}{ }^{+}$ provides a general route to compounds of the type cis-[Pt$\left.\left(\mathrm{PR}_{3}\right)_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]^{2+}$. Such compounds, although containing perhaps the two most common ligands in platinum chemistry, have not previously been fully characterised.

Experimental

Reactions were routinely carried out using Schlenk-line tech-
niques under pure dry dinitrogen using dioxygen-free solvents, but no special precautions were taken to exclude oxygen during work-up procedures. M icroanalyses (C, H and N) were carried out by the Imperial College M icroanalytical Service. Infrared spectra were recorded on a Perkin-Elmer 1720 spectrometer as K Br pellets, ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectra on a JEOL JNMEX 270 spectrometer operating at 270 M Hz referenced to SiM_{4} and at 109.4 M Hz referenced to $\mathrm{H}_{3} \mathrm{PO}_{4}$, respectively, ${ }^{15} \mathrm{~N}-\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{195} \mathrm{Pt}$ spectra on a JEOL-EX 400 spectrometer operating at 40.5 M Hz referenced to $\mathrm{M} \mathrm{eN}_{2}$ and at 85.6 M Hz referenced to $\mathrm{H}_{2} \mathrm{PtCl}_{6} \cdot \mathrm{xH}_{2} \mathrm{O}$, respectively and FAB mass spectra on a VG AutoSpec-Q spectrometer using 3-nitrobenzyl alcohol as the matrix.
The complexes $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CO}_{3}\right)\right]^{2}\left[\mathrm{Pt}\left(\mathrm{PEt}_{3}\right)_{2}\left(\mathrm{CO}_{3}\right)\right]^{19}$ and $[\mathrm{Pt}-$ (dppe) $\left.\left(\mathrm{CO}_{3}\right)\right]^{19}$ were prepared by the standard literature methods.

Reactions of $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CO}_{3}\right)\right]$

With $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CO}_{2} \mathrm{H}\right)_{2}-1,4$: synthesis of $\left[\left\{\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right\}_{2}\{\mu-1,4-\right.$ $\left.\left.\left(\mathrm{O}_{2} \mathrm{C}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right\}_{2}\right] 1 \mathrm{a}$. The complex $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CO}_{3}\right)\right](0.200 \mathrm{~g}, 0.26$ mmol) and terephthalic acid ($0.041 \mathrm{~g}, 0.25 \mathrm{mmol}$) were dissolved/suspended in ethanol $\left(30 \mathrm{~cm}^{3}\right)$ and the mixture stirred in darkness for 24 h . The solution was filtered and the colourless solid recrystallised from dichloromethane-diethyl ether to give crystals of $\left[\left\{\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right\}_{2}\left\{\mu-1,4-\left(\mathrm{O}_{2} \mathrm{C}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right\}_{2}\right]$ (Found: C , 56.7; $\mathrm{H}, 3.85 . \mathrm{C}_{88} \mathrm{H}_{68} \mathrm{O}_{8} \mathrm{P}_{4} \mathrm{Pt}_{2} \cdot 0.75 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ requires $\mathrm{C}, 56.7 ; \mathrm{H}$, $3.8 \%) ; \tilde{v}_{\max } / \mathrm{cm}^{-1}\left(\mathrm{CO}_{2}\right) 1619 \mathrm{~s}$ and $1325 \mathrm{vs} ; \delta_{\mathrm{p}}\left(\mathrm{CDCl}_{3}\right) 7.1[\mathrm{~s}$, ${ }^{1} \mathrm{~J}$ (PPt) 3830 Hz]; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right.$) 7.7-6.9 (m, aryl); m/z $1767\left(\mathrm{M}^{+}\right)$, $885\left(\left[\operatorname{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left\{1,4-\left(\mathrm{O}_{2} \mathrm{C}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right\} \mathrm{H}\right]^{+}\right)$and $718\left\{\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}\right\}$.

W ith $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CO}_{2} \mathrm{H}\right)_{2}-\mathbf{1}, \mathbf{3}$: synthesis of $\left[\left\{\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right\}_{2}\{\mu-1,3-\right.$ $\left.\left.\left(\mathrm{O}_{2} \mathrm{C}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right\}_{2}\right]$ 1b. The complex $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CO}_{3}\right)\right](0.200 \mathrm{~g}, 0.26$ $\mathrm{mmol})$ and isophthalic acid ($0.041 \mathrm{~g}, 0.25 \mathrm{mmol}$) were dissolved/suspended in ethanol $\left(30 \mathrm{~cm}^{3}\right)$ and the mixture stirred in darkness for 24 h . The solution was filtered and the colourless solid recrystallised from dichloromethane-diethyl ether to give crystals of $\left[\left\{\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right\}_{2}\left\{\mu-1,3-\left(\mathrm{O}_{2} \mathrm{C}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right\}_{2}\right]\right.$ (Found: C, 55.8; H, 3.85. $\mathrm{C}_{88} \mathrm{H}_{68} \mathrm{O}_{8} \mathrm{P}_{4} \mathrm{Pt}_{2} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ requires C, $55.8 ; \mathrm{H}$, $3.75 \%) ; \tilde{\mathrm{v}} / \mathrm{cm}^{-1}\left(\mathrm{CO}_{2}\right) 1624 \mathrm{~s}$ and $1325 \mathrm{vs} ; \delta_{\mathrm{p}}\left(\mathrm{CDCl}_{3}\right) 6.9[\mathrm{~s}$, ${ }^{1} \mathrm{~J}$ (PPt) 3876 Hz]; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ 7.7-6.9 (m, aryl); m/z $1768\left(\mathrm{M}^{+}\right)$, $885\left(\left[\operatorname{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left\{1,3-\left(\mathrm{O}_{2} \mathrm{C}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right\} \mathrm{H}\right]^{+}\right)$and $718\left\{\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}\right\}$.

With trans,trans-muconic acid: synthesis of $\left[\left\{\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right\}_{2}-\right.$ (μ-trans, trans $\left.-\mathrm{O}_{2} \mathrm{CCH}=\mathbf{C H C H}=\mathrm{CHCO}_{2}\right)_{2}$] lc. The complex $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CO}_{3}\right)\right](0.100 \mathrm{~g}, 0.13 \mathrm{mmol})$ and trans-trans-muconic acid ($0.018 \mathrm{~g}, 0.13 \mathrm{mmol}$) were dissolved/suspended in ethanol $\left(30 \mathrm{~cm}^{3}\right)$ and the mixture stirred in darkness for 24 h . The solution was filtered and the colourless solid recrystallised from dichloromethane-hexane to give microcrystals of $\left[\left\{\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right\}_{2}-\right.$ (μ-trans, trans $-\mathrm{O}_{2} \mathrm{CCH}=\mathrm{CHCH}=\mathrm{CHCO}_{2}$) 2] (Found: $\mathrm{C}, 55.0 ; \mathrm{H}$, 3.95. $\mathrm{C}_{84} \mathrm{H}_{68} \mathrm{O}_{8} \mathrm{P}_{4} \mathrm{Pt}_{2} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ requires C, 54.7; $\mathrm{H}, 3.85 \%$); $\tilde{v}_{\text {max }} /$ $\mathrm{cm}^{-1}\left(\mathrm{CO}_{2}\right) 1624 \mathrm{~s}$ and $1321 \mathrm{vs} ; \delta_{\mathrm{p}}\left(\mathrm{CDCl}_{3}\right) 6.6\left[\mathrm{~s},{ }^{1} \mathrm{j}(\mathrm{PPt}) 3832\right.$ $\mathrm{Hz}] ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ 7.8-7.0 (m, aryl and CH$)$ and $6.4(\mathrm{~m}, \mathrm{CH}) ; \mathrm{m} / \mathrm{z}$ $1719\left(\mathrm{M}^{+}\right), 860\left\{\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{O}_{2} \mathrm{CCH}=\mathrm{CHCH}=\mathrm{CHCO}_{2}\right) \mathrm{H}\right]^{+}\right\}$and $718\left\{\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}\right\}$.

With 4,4'-biphenyldicarboxylic acid: synthesis of [\{Pt-$\left.\left.\left(\mathrm{PPh}_{3}\right)_{2}\right\}_{2}\left(\mu-\mathrm{O}_{2} \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2}\right)_{2}\right]$ 1d. The complex $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}-\right.$ $\left.\left(\mathrm{CO}_{3}\right)\right]$ ($0.100 \mathrm{~g}, 0.13 \mathrm{mmol}$) and 4,4'-biphenyldicarboxylic acid $(0.031 \mathrm{~g}, 0.13 \mathrm{mmol})$ were dissolved/suspended in ethanol (30 cm^{3}) and the mixture stirred in darkness for 40 h . The solution was filtered and the colourless solid recrystallised from dichloromethane-diethyl ether to give crystals of [\{Pt-$\left.\left(\mathrm{PPh}_{3}\right)_{2}\right\}_{2}\left(\mu-\mathrm{O}_{2} \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2}\right)_{2}$] (Found: C, 57.8; H, 4.15. $\mathrm{C}_{100} \mathrm{H}_{76} \mathrm{O}_{8} \mathrm{P}_{4} \mathrm{Pt}_{2} \cdot 2.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ requires $\mathrm{C}, 57.7 ; \mathrm{H}, 3.85 \%$); $\tilde{v}_{\text {max }}($ $\mathrm{cm}^{-1}\left(\mathrm{CO}_{2}\right) 1618 \mathrm{~s}$ and $1335 \mathrm{vs} ; \delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 7.0\left[\mathrm{~s},{ }^{1} \mathrm{j}(\mathrm{PPt}) 3844\right.$ $\mathrm{Hz}] ; \delta_{\mathbf{H}}\left(\mathrm{CDCl}_{3}\right)$ 7.8-7.0 (m, aryl); m/z $718\left\{\left[\mathrm{Pt}^{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}\right\}$.

With $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CO}_{2} \mathrm{H}\right)_{2}-1,4$ and $\mathrm{NH}_{4} \mathrm{PF}_{6}$: synthesis of $\left[\left\{\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{NH}_{3}\right)\right\}_{2}\left\{\mu-1,4-\left(\mathrm{O}_{2} \mathrm{C}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right\}\right]\left[\mathrm{PF}_{6} \mathrm{l}_{2}\right.\right.$ 2. The complex
$\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CO}_{3}\right)\right](0.200 \mathrm{~g}, 0.26 \mathrm{mmol})$, terephthalic acid (0.041 $\mathrm{g}, 0.25 \mathrm{mmol})$ and $\mathrm{NH}_{4}{ }_{4} \mathrm{PF}_{6}(0.200 \mathrm{~g}, 1.2 \mathrm{mmol})$ were dissolved/ suspended in ethanol ($30 \mathrm{~cm}^{3}$) and the mixture stirred for 35 h . The solution was filtered and the colourless solid recrystallised from dichloromethane-diethyl ether to give crystals of [\{Pt $\left.\left.\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{NH}_{3}\right)\right\}_{2}\left\{\mu-1,4-\left(\mathrm{O}_{2} \mathrm{C}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right\}\right]\left[\mathrm{PF}_{6}\right]_{2}$ (Found: C, 46.0; H 3.3; $\mathrm{N}, 1.25 . \mathrm{C}_{80} \mathrm{H}_{70} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}_{4} \mathrm{Pt}_{2} \cdot 3 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ requires C, 45.7; $\mathrm{H}, 3.5$; $\mathrm{N}, 1.3 \%)$; $\tilde{\mathrm{v}}_{\text {max }} / \mathrm{cm}^{-1} 3356 \mathrm{~s}\left(\mathrm{NH}_{3}\right), 1598 \mathrm{~s}$ and $1313 \mathrm{~s}\left(\mathrm{CO}_{2}\right)$, $838 v s\left(\mathrm{PF}_{6}\right) ; \delta_{\mathrm{p}}\left(\mathrm{CDCl}_{3}\right) 10.1$ [d, ${ }^{1}$) (PPt) 3530, ${ }^{2}$ (PP) 22] and 6.7 [d, ${ }^{1}$ (PPt) 3659, ${ }^{2}$ (PP) 22 Hz]; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.8-6.8(64 \mathrm{H}, \mathrm{m}$, aryl) and $3.40[6 \mathrm{H}, \mathrm{s}(\mathrm{br}), \mathrm{NH}] ; \mathrm{m} / \mathrm{z} 1357\left(\left[\mathrm{M}-\mathrm{PPh}_{3}-\mathrm{NH}_{3}\right]^{+}\right.$), $1340\left(\left[\mathrm{M}-\mathrm{PPh}_{3}-2 \mathrm{NH}_{3}\right]^{+}\right), 883\left(\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left\{\left(\mathrm{O}_{2} \mathrm{C}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right\}\right]^{+}\right)$, $736\left\{\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{NH}_{3}\right)\right]^{+}\right\}$and $719\left\{\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}\right\}$.

With $\mathrm{NH}_{4} \mathrm{PF}_{6}$: synthesis of cis- $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]\left[\mathrm{PF}_{6} \boldsymbol{1}_{2}\right.$ 3a. The complex $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CO}_{3}\right)\right](0.100 \mathrm{~g}, 0.13 \mathrm{mmol})$ and $\mathrm{NH}_{4} \mathrm{PF}_{6}(0.200 \mathrm{~g}, 1.2 \mathrm{mmol})$ were dissolved in ethanol $\left(30 \mathrm{~cm}^{3}\right)$ and stirred for 24 h . The solvent was removed in vacuo and the product extracted with dichloromethane $\left(3 \times 5 \mathrm{~cm}^{3}\right)$. The dichloromethane volume was then reduced in vacuo and hexane added to give colourless crystals of cis-[$\left.\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]$ [$\left.\mathrm{PF}_{6}\right]_{2}$ Found: C, 41.2; H, 3.45; N, 2.55. $\mathrm{C}_{36} \mathrm{H}_{36} \mathrm{~F}_{12} \mathrm{~N}_{2} \mathrm{P}_{4} \mathrm{Pt}$ requires C, 41.4; H, 3.5; N, 2.7\%); $\tilde{v}_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{NH}_{3}\right) 3342 \mathrm{~s}$ and $3274 \mathrm{~s} ; \tilde{\delta}_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{NH}_{3}\right) 1623 \mathrm{~s} ; \tilde{\mathrm{v}}_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{PF}_{6}\right) 833 \mathrm{vs} ;$ $\delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 7.8$ [s, ${ }^{1}$ (PPt) 3428 Hz]; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.5(30 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph})$ and $3.15[6 \mathrm{H}, \mathrm{s}(\mathrm{br}), \mathrm{NH}] ; \mathrm{m} / \mathrm{z} 898\left(\left[\mathrm{M}+\mathrm{PF}_{6}\right]^{+}\right), 754$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right), 737\left(\left[\mathrm{M}-\mathrm{NH}_{3}+\mathrm{H}\right]^{+}\right), 719\left(\left[\mathrm{M}-2 \mathrm{NH}_{3}\right]^{+}\right)$and $377\left(\mathrm{M}^{2+}\right)$.

With $\mathrm{NH}_{4} \mathrm{NO}_{3}$: synthesis of cis- $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]\left[\mathrm{NO}_{3}\right]_{2} 3 \mathrm{~b}$. The procedure was as above using $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CO}_{3}\right)\right](0.150 \mathrm{~g}$, 0.19 mmol) and $\mathrm{NH}_{4} \mathrm{NO}_{3}(0.045 \mathrm{~g}, 0.56 \mathrm{mmol}$) (Found: $\mathrm{C}, 47.1$; $\mathrm{H}, 4.3 ; \mathrm{N}, 6.0 . \mathrm{C}_{36} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{P}{ }_{2} \mathrm{Pt} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ requires C, 47.6; H , 4.05; $\mathrm{N}, 6.1 \%$); $\tilde{v}_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{NH}_{3}\right) 3436 \mathrm{~s}$ and $3335 \mathrm{~m} ; \tilde{\delta}_{\text {max }} /$ $\mathrm{cm}^{-1}\left(\mathrm{NH}_{3}\right) 1625 \mathrm{~s} ; \tilde{v}_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{NO}_{3}\right)$ 1384vs and 1313s; $\delta_{\text {P }}\left(\mathrm{CDCl}_{3}\right) 9.3\left[\mathrm{~s},{ }^{1}\right.$] (PPt) 3361 Hz]; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.4(30 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and $4.28[6 \mathrm{H}, \mathrm{s}(\mathrm{br}), \mathrm{NH}] ; \mathrm{m} / \mathrm{z} 781\left(\left[\mathrm{M}-2 \mathrm{NH}_{3}+\mathrm{NO}_{3}\right]^{+}\right), 737$ ([M $\left.\left.-\mathrm{NH}_{3}\right]^{+}\right), 719\left(\left[\mathrm{M}-2 \mathrm{NH}_{3}\right]^{+}\right)$and $377\left(\mathrm{M}^{2+}\right)$.
W ith ${ }^{15} \mathrm{NH}_{4} \mathrm{NO}_{3}$: synthesis of cis- $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left({ }^{15} \mathrm{NH}_{3}\right)_{2}\right]\left[\mathrm{NO}_{3}\right]$. The procedure was as above using $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CO}_{3}\right)\right](0.100 \mathrm{~g}$, $0.13 \mathrm{mmol})$ and ${ }^{15} \mathrm{NH}_{4} \mathrm{NO}_{3}(0.030 \mathrm{~g}, 0.38 \mathrm{mmol}) . \delta_{\mathrm{p}}\left(\mathrm{CDCl}_{3}\right) 9.3$

 $\left.{ }^{2} \mathrm{j}\left(\mathrm{PN}_{\text {cis }}\right)-1\right] ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.4(30 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and $4.28[6 \mathrm{H}, \mathrm{m}$, NH, ${ }^{1}$ (HN) 72, ${ }^{2} \mathrm{~J}(\mathrm{HPt}) 32,{ }^{3} \mathrm{~J}\left(\mathrm{HP}_{\text {trans }}\right) 3 \mathrm{j} ; \delta_{\mathrm{pt}}\left(\mathrm{CDCl}_{3}\right)-4452$ [tt, ${ }^{1}$ (PPt) $3361,{ }^{1} \mathrm{~J}$ (N Pt) 194 Hz].

W ith $\mathrm{PhC} \equiv \mathrm{CCO}_{2} \mathrm{H}$: synthesis of cis- $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{C} \equiv \mathrm{CPh})_{2}\right] 6$. The complex $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CO}_{3}\right)\right](0.100 \mathrm{~g}, 0.13 \mathrm{mmol})$ and phenylpropiolic acid ($0.050 \mathrm{~g}, 0.34 \mathrm{mmol}$) were dissolved/suspended in ethanol ($30 \mathrm{~cm}^{3}$) and the mixture stirred in darkness for 16 h . The solution was filtered and the colourless solid recrystallised from dichloromethane-hexane to give crystals of cis-[$\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2^{-}}$ ($\mathrm{C} \equiv \mathrm{CPh})_{2}$] (Found: $\mathrm{C}, 67.5 ; \mathrm{H}, 4.35 . \mathrm{C}_{52} \mathrm{H}_{40} \mathrm{P} 2 \mathrm{Pt}$ requires C , 67.7 ; H, 4.35\%); $\tilde{v}_{\text {max }} / \mathrm{cm}^{-1}(\mathrm{C} \equiv \mathrm{C}) 2119 \mathrm{~s} ; \delta_{\mathrm{p}}\left(\mathrm{CDCl}_{3}\right) 17.3[\mathrm{~s}$, ${ }^{1} \mathrm{~J}$ (PPt) 2331] \{cf. sample prepared by literature method, trans$\left.\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{C} \equiv \mathrm{CPh})_{2}\right], \delta 17.3\left[\mathrm{~s}^{1}{ }^{1} \text { (PPt) } 2988 \mathrm{~Hz}\right]^{18}\right\} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ 7.6-6.8 (m, aryl); m/z $922\left([\mathrm{M}+\mathrm{H}]^{+}\right), 820\left(\left[\mathrm{M}-\mathrm{C}_{2} \mathrm{Ph}\right]^{+}\right)$and 719 ([M - 2C $\left.{ }_{2} \mathrm{Ph}\right]^{+}$).

Reactions of $\left[\mathrm{Pt}\left(\mathrm{PEt}_{3}\right)_{2}\left(\mathrm{CO}_{3}\right)\right]$

With $\mathrm{NH}_{4} \mathrm{PF}_{6}$: synthesis of cis-[$\left.\mathrm{Pt}\left(\mathrm{PEt}_{3}\right)_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]_{2} 4 \mathrm{a}$. The procedure was as for complex 3a using $\left[\mathrm{Pt}\left(\mathrm{PEt}_{3}\right)_{2}\left(\mathrm{CO}_{3}\right)\right]$ ($0.100 \mathrm{~g}, 0.20 \mathrm{mmol}$) and $\mathrm{NH}_{4} \mathrm{PF}_{6}(0.120 \mathrm{~g}, 0.74 \mathrm{mmol})$ (Found: $\mathrm{C}, 19.5 ; \mathrm{H}, 4.5 ; \mathrm{N}, 3.4 . \mathrm{C}_{12} \mathrm{H}_{36} \mathrm{~F}_{12} \mathrm{~N}_{2} \mathrm{P}_{4} \mathrm{Pt}$ requires $\mathrm{C}, 19.1 ; \mathrm{H}, 4.8$; $\mathrm{N}, 3.7 \%) ; \tilde{\mathrm{v}}_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{NH}_{3}\right) 3356 \mathrm{~s}$ and $3294 \mathrm{~s} ; \tilde{\delta}_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{NH}_{3}\right)$ 1637s; $\tilde{v}_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{PF}_{6}\right) 837 \mathrm{vs} ; \delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}-\mathrm{CH}_{2} \mathrm{Cl} \mathrm{I}_{2}\right) 1.9\left[\mathrm{~s},{ }^{1} \mathrm{~J}\right.$ (PPt) $3212 \mathrm{~Hz}] ; \delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right) 4.4[6 \mathrm{H}, \mathrm{s}(\mathrm{br}), \mathrm{NH}], 2.28(12 \mathrm{H}, \mathrm{dq}$, CH_{2}) and $1.31\left(18 \mathrm{H}, \mathrm{dt}, \mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z} 466\left([\mathrm{M}+\mathrm{H}]^{+}\right), 448$ $\left(\left[\mathrm{M}-\mathrm{NH}_{3}\right]^{+}\right)$and $431\left(\left[\mathrm{M}-2 \mathrm{NH}_{3}\right]^{+}\right)$.

With $\mathrm{NH}_{4} \mathrm{NO}_{3}$: synthesis of cis-[$\left[\mathrm{Pt}\left(\mathrm{PEt}_{3}\right)_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]\left[\mathrm{NO}_{3}\right]{ }_{2} 4 \mathrm{~b}$. The complex $\left[\mathrm{Pt}\left(\mathrm{PEt}_{3}\right)_{2}\left(\mathrm{CO}_{3}\right)\right]$ ($0.100 \mathrm{~g}, 0.20 \mathrm{mmol}$) and $\mathrm{NH}_{4} \mathrm{NO}_{3}(0.049 \mathrm{~g}, 0.61 \mathrm{mmol})$ were dissolved in ethanol (30 cm^{3}) and stirred for 24 h . The solvent volume was reduced in vacuo and diethyl ether added to give colourless microcrystals of cis-[Pt($\left.\left.\mathrm{PEt}_{3}\right)_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]\left[\mathrm{NO}_{3}\right]_{2}$ (Found: C, 24.6; $\mathrm{H}, 5.9 ; \mathrm{N}, 9.4$. $\mathrm{C}_{12} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{P}{ }_{4} \mathrm{Pt}$ requires C, 24.5; H, 6.15; H, 9.5\%); $\tilde{v}_{\text {max }} /$ $\mathrm{cm}^{-1}\left(\mathrm{NH}_{3}\right) 3252 \mathrm{~s}, 3184 \mathrm{~s}$ and $3116 \mathrm{~s} ; \tilde{\delta}_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{NH}_{3}\right) 1638 \mathrm{~s} ; \tilde{v}_{\text {max }} /$ $\mathrm{cm}^{-1}\left(\mathrm{NO}_{3}\right)$ 1383vs and 1327s; $\delta_{\mathrm{p}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 3.1\left[\mathrm{~s},{ }^{1} \mathrm{~J}\right.$ (PPt) 3127 $\mathrm{Hz}] ; \delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right) 4.6[6 \mathrm{H}, \mathrm{s}(\mathrm{br}), \mathrm{NH}], 2.23\left(12 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$ and $1.29\left(18 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z} 493\left(\left[\mathrm{M}-2 \mathrm{NH}_{3}+\mathrm{NO}_{3}\right]^{+}\right), 466$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right), 448\left(\left[\mathrm{M}-\mathrm{NH}_{3}\right]^{+}\right)$and $431\left(\left[\mathrm{M}-2 \mathrm{NH}_{3}\right]^{+}\right)$.

Reactions of [$\left.\mathrm{Pt}(\mathrm{dppe})\left(\mathrm{CO}_{3}\right)\right]$

W ith $\mathrm{NH}_{4} \mathrm{PF}_{6}$: synthesis of $\left[\mathrm{Pt}(\mathrm{dppe})\left(\mathrm{NH}_{3}\right)_{2}\right]\left[\mathrm{PF} \mathrm{F}_{6}\right]_{2}$ 5a. The procedure was as for complex 3a using $\left[\mathrm{Pt}(\mathrm{dppe})\left(\mathrm{CO}_{3}\right)\right]$ (0.100 $\mathrm{g}, 0.15 \mathrm{mmol})$ and $\mathrm{NH}_{4} \mathrm{PF}_{6}(0.200 \mathrm{~g}, 1.2 \mathrm{mmol})$ (Found: $\mathrm{C}, 34.0$; $\mathrm{H}, 3.15 ; \mathrm{N}, 2.85 . \mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~F}_{12} \mathrm{~N}_{2} \mathrm{P}_{4} \mathrm{Pt}$ requires $\mathrm{C}, 34.0 ; \mathrm{H}, 3.3 ; \mathrm{N}$, 3.05%); $\tilde{v}_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{NH}_{3}\right) 3339 \mathrm{~s}$ and $3286 \mathrm{~s} ; \tilde{\delta}_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{NH}_{3}\right)$ $1633 \mathrm{~s} ; \tilde{v}_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{PF}_{6}\right) 840 \mathrm{vs} ; \delta_{\mathrm{p}}\left(\mathrm{CDCl}_{3}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 40.2\left[\mathrm{~s},{ }^{1} \mathrm{~J}\right.$ (PPt) $3340 \mathrm{~Hz}] ; \delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right) 8.2-7.6(20 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.48[6 \mathrm{H}$, $\mathrm{s}(\mathrm{br}), \mathrm{NH}]$ and $2.9\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right) ; \mathrm{m} / \mathrm{z} 772\left(\left[\mathrm{M}+\mathrm{PF}_{6}\right)^{+}\right), 628$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right), 610\left(\left[\mathrm{M}-\mathrm{NH}_{3}\right]^{+}\right)$and $593\left(\left[\mathrm{M}-2 \mathrm{NH}_{3}\right]^{+}\right)$.

W ith $\mathrm{PhC} \equiv \mathrm{CCO}_{2} \mathrm{H}$: synthesis of $\left[\mathrm{Pt}(\mathrm{dppe})(\mathrm{C} \equiv \mathrm{CPh})_{2}\right]$ 7. The complex $\left[\mathrm{Pt}(\mathrm{dppe})\left(\mathrm{CO}_{3}\right)\right](0.100 \mathrm{~g}, 0.13 \mathrm{mmol})$ and phenylpropiolic acid ($0.050 \mathrm{~g}, 0.34 \mathrm{mmol}$) were dissolved/suspended in ethanol $\left(30 \mathrm{~cm}^{3}\right)$ and the mixture stirred in darkness for 16 h . The solution was filtered and the colourless solid recrystallised from dichloromethane-hexane to give crystals of $[\mathrm{Pt}(\mathrm{dppe})$ ($\mathrm{C} \equiv \mathrm{CPh})_{2}$] (Found: $\mathrm{C}, 63.6 ; \mathrm{H}, 4.4 . \mathrm{C}_{42} \mathrm{H}_{34} \mathrm{P}{ }_{2} \mathrm{Pt}$ requires $\mathrm{C}, 63.4$; $\mathrm{H}, 4.3 \%) ; \tilde{v}_{\text {max }} / \mathrm{cm}^{-1}(\mathrm{C} \equiv \mathrm{C}) 2109 \mathrm{~s} ; \delta_{\mathrm{p}}\left(\mathrm{CDCl}_{3}\right) 41.7\left[\mathrm{~s},{ }^{1} \mathrm{j}(\mathrm{PPt})\right.$ 2280] \{cf. $\delta 41.1$ [s, ${ }^{1}$ (PPt) $\left.2280 \mathrm{~Hz}{ }^{18}\right\} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 8.0-7.0$ (m, 30 H , aryl) and $2.43\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right) ; \mathrm{m} / \mathrm{z} 796\left([\mathrm{M}+\mathrm{H}]^{+}\right), 694$ ($\left[\mathrm{M}-\mathrm{C}_{2} \mathrm{Ph}\right]^{+}$) and $593\left(\left[\mathrm{M}-2 \mathrm{C}_{2} \mathrm{Ph}\right]^{+}\right)$.

Reaction of complex la with $\mathrm{NH}_{4} \mathrm{PF}_{6}$

Complex la ($0.100 \mathrm{~g}, 0.057 \mathrm{mmol}$) was dissolved in dichloromethane ($20 \mathrm{~cm}^{3}$) and $\mathrm{NH}_{4} \mathrm{PF}_{6}(0.100 \mathrm{~g}, 0.61 \mathrm{mmol})$ in ethanol $\left(5 \mathrm{~cm}^{3}\right)$ added. The mixture was stirred for 72 h and the solvent removed in vacuo. The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum showed a 55:45 mixture of 1a and 2. Repeating with more $\mathrm{NH}_{4} \mathrm{PF}_{6}$ $(0.100 \mathrm{~g})$ over 48 h led to no change in the product distribution.

C rystallography

Table 4 provides a summary of the crystal data, data collection and refinement parameters for complexes $\mathbf{1 b}, 2$ and $\mathbf{3 b}$. Structures $\mathbf{1 b}$ and $\mathbf{2}$ were solved by the heavy-atom method, $\mathbf{3 b}$ by direct methods and all three were refined by full-matrix least squares based on F^{2}. Despite collecting data at reduced temperature, the scattering of complex $\mathbf{1 b}$ was very weak, and as a consequence only the platinum and phosphorus atoms could be refined anisotropically. For $\mathbf{2}$ and $\mathbf{3 b}$, however, all the fulloccupancy non-hydrogen atoms of the ionic species were refined anisotropically; the single unique PF_{6} anion in 2 was disordered and was refined isotropically in two alternative partial-occupancy orientations. All the structures contain a mixture of ordered and disordered, full and partial occupancy solvent molecules which were refined isotropically. The phenyl rings of the triphenylphosphine ligands were refined as idealised rigid bodies. TheN H protons in $\mathbf{2}$ and $\mathbf{3 b}$ were located from difference electron-density maps and optimised to tetrahedral geometries ($\mathrm{N}-\mathrm{H} 0.90 \AA$). The $\mathrm{C}-\mathrm{H}$ hydrogen atoms of each structure were placed in calculated positions, assigned isotropic thermal parameters and allowed to ride on their parent atoms. Computations were carried out using the SHELXTL PC program system. ${ }^{20}$
A tomic coordinates, thermal parameters, and bond lengths and angles have been deposited at the Cambridge Crystallo-

Table 4 Crystal data, data collection and refinement parameters ${ }^{\text {a }}$ for complexes $\mathbf{1 b}, \mathbf{2}$ and $\mathbf{3 b}$

	1b	2	3b
Formula	$\mathrm{C}_{88} \mathrm{H}_{68} \mathrm{O}_{8} \mathrm{P}_{4} \mathrm{Pt}_{2}$	$\mathrm{C}_{80} \mathrm{H}_{70} \mathrm{~F}_{12} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}_{6} \mathrm{Pt}_{2}$	$\mathrm{C}_{36} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{P} 2 \mathrm{Pt}$
Solvent	$\mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot 0.5 \mathrm{Et}_{2} \mathrm{O} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$	$4 \mathrm{CH}_{2} \mathrm{Cl}_{2}$	0.875thf
M	2068.3	2267.1	940.8
Colour, habit	Clear blocky needles	Clear needles	Clear plates
Crystal size/mm	$0.20 \times 0.20 \times 0.17$	$0.63 \times 0.23 \times 0.23$	$0.63 \times 0.36 \times 0.07$
Space group	P $21 / \mathrm{c}$	P $21 / \mathrm{c}$	C 2/c
T/K	203	173	253
a/Å	21.154(3)	10.548(3)	26.63(3)
b/Å	17.518(10)	20.092(2)	26.93(3)
c/Å	27.114(4)	21.014(4)	24.77(3)
$\beta /{ }^{\circ}$	108.81(1)	99.40(2)	108.26(11)
\cup / \AA^{3}	9512(6)	4394(2)	16 864(29)
Z	4	$2{ }^{\text {b }}$	$16^{\text {c }}$
D $/ \mathrm{g} \mathrm{cm}^{-3}$	1.444	1.714	1.482
F (000)	4112	2236	7536
μ / mm^{-1}	3.226	3.609	3.454
θ Range/ ${ }^{\circ}$	1.9-22.5	2.0-23.0	1.8-23.0
No. measured reflections	12441	6087	11739
No. observed reflections $\left[\left\|F_{0}\right\|>4 \sigma\left(\left\|F_{0}\right\|\right)\right]$	5779	4671	7633
A bsorption correction	Empirical	Gaussian	G aussian
M aximum, minimum transmission	$0.7878,0.2570$	$0.4828,0.4331$	$0.7981,0.3273$
No. variables	376	455	812
R1 ${ }^{\text {d }}$	0.105	0.052	0.059
wR $2^{\text {e }}$	0.211	0.111	0.134
Weighting factors $\mathrm{a}, \mathrm{b}^{\text {f }}$	0.084, 187.876	0.000, 90.000	0.069, 126.433
L argest difference peak, hole/e \AA^{-3}	1.45, -1.28	1.89, -1.56	1.32, -0.67

${ }^{\text {a }}$ D etails in common: graphite-monochromated $\mathrm{M} \mathrm{o-K} \alpha$ radiation ($\lambda=0.71073 \AA$); ω scans; Siemens P4/PC diffractometer; monoclinic. ${ }^{\text {b }}$ The molecule has crystallographic C_{i} symmetry. ${ }^{\text {c }}$ There are two crystallographically independent molecules in the asymmetric unit. ${ }^{d} \Sigma| | F_{0}\left|-\left|F_{c}\right|\right| \Sigma\left|F_{0}\right|$. ${ }^{\mathrm{e}}\left[\Sigma \mathrm{W}\left(\mathrm{F}_{0}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2} / \Sigma \mathrm{W}\left(\mathrm{F}_{0}{ }^{2}\right)^{2}\right]^{\frac{1}{2}} \cdot{ }^{\mathrm{f}} \mathrm{W}^{-1}=\sigma^{2}\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}\right)+(\mathrm{aP})^{2}+\mathrm{bP}$.
graphic Data Centre (CCDC). See Instructions for Authors, J. Chem. Soc., D alton Trans., 1997, Issue 1. A ny request to the CCDC for this material should quote the full literature citation and the reference number 186/410.

Acknowledgements

The EPSRC is thanked for financial support and BP plc is thanked for endowing D. M. P. M.'s chair.

References

1 N. N. Greenwood and A. Earnshaw, Chemistry of the Elements, Pergamon, Oxford, 1984.
2 C. J. Nyman, C. E. Wymore and G. Wilkinson, J. Chem. Soc. A, 1968, 561.
3 J.-P. L aurant and B. M orvan, J. Chem. Soc., D alton Trans., 1993, 2141.

4 A. L. Tan, P. M. N. Low, Z.-Y. Zhou, W. Zheng, B.-M. Wu, T. C. K. M ak and T. S. A. H or, J. C hem. Soc., D alton Trans., 1996, 2207.

5 M. A. Andrews, E. J. Voss, G. L. Gould, W. T. K looster and T. F. K oetzle, J. A m. Chem. Soc., 1994, 116, 5730.

6 D. W. Dockter, P. E. Fanwick and C. P. K ubiak, J. Am. Chem. Soc., 1996, 118, 4846.
7 S. K. M auldin, I. H usain, A . Sancar and S. G. Chang, C ancer Res., 1986, 46, 2876.

8 M . F ujita and K. Ogura, C oord. Chem. Rev., 1996, 148, 249
9 C. Bird, B. L. Booth, B. N. H aszeldine, G. R . H. N euss, M . A . Smith and A. Flood, J. C hem. Soc., D alton Trans., 1982, 1109.
10 M. V. Capparelli, D. M. L. Goodgame, R. T. Riley and A. C. Skapski, Inorg. Chim. A cta, 1982, 67, L9.

11 U. N iemann, J. Diebold, C. Troll, U. Rief and H.-H. Brintzinger, J. Organomet. Chem., 1993, 456, 195.

12 M . I. Gel'fman and N. A. K uslova, K oord. K him., 1979, 5, 1402; Chem. A bstr., 1979, 91, 203546]
13 J. Chatt, L. A . D uncanson and L. M . Venanzi, J. C hem. Soc., 1956, 2712.

14 H. M. Colquhoun, J. F. Stoddart and D. J. Williams, J. Chem. Soc., C hem. Commun., 1981, 847.
15 D. R. A Iston, A. M. Z. Slawin, J. F. Stoddart, D. J. Williams and R. Zarzycki, A ngew. Chem., Int. E d. E ngl., 1988, 27, 1184.

16 R. G. G unther and D. S. M artin, jun., I norg. C him. Acta, 1972, 6, 81.
17 F. R. H artley, S. G. M urray and A. Wilkinson, Inorg. Chem., 1989, 28, 549.
18 G. K. A nderson and G. J. L umetta, J. O rganomet. C hem., 1985, 295, 257.

19 C. Eaborn, A. Pidcock and B. R. Steele, J. Chem. Soc., D alton Trans., 1975, 809.
20 SHELXTL PC version 5.03, Siemens A nalytical X-Ray Instruments, M adison, WI, 1994.

Received 21st N ovember 1996; Paper 6/07909A

[^0]: † E-M ail: a.d.burrows@bath.ac.uk

